BLOG

Blog

Blog (44)

Blog Industrias Doje S.L. - fundición inyectada de zamak y aluminio

Expertos fundidores. Nuestros clientes confían en nosotros. Ya que colaboramos con nuestros conocimientos en fundición inyectada y en la creación de nuevas piezas de zamak y aluminio..

Children categories

Zamak

Zamak (11)

Árticulos de zamak. Suministra las piezas, de conformidad con los deseos del cliente, parcial ó totalmente terminadas y asesora sobre todos los moldes y útiles necesarios.

View items...
Aluminio

Aluminio (8)

Artículos relacionados con el aluminio. Suministra las piezas, de conformidad con los deseos del cliente, parcial ó totalmente terminadas y asesora sobre todos los moldes y útiles necesarios.

View items...
Novedades

Novedades (1)

Novedades relacionadas con la funidición inyectada de zamak y aluminio.

View items...
Actualidad

Actualidad (13)

Actualidad de Industrias Doje S.L. - fundición inyectada de zamak y aluminio

View items...
Fundición inyectada

Fundición inyectada (11)

El moldeo por inyección es una técnica muy popular para la fabricación de artículos muy diferentes.

View items...

INDUSTRIAS DOJE, S.L. assistera au salon de la sous-traitance MIDEST 2018 qu'il aura lieu à Paris les 27, 28, 29 et 30 de mars. L'évènement qui a consolidé chaque année comme une des principaux salons de la sous-traitance au niveau mondial, permettant consolider la présence de beaucoup d'entreprises en France et aussi dans le reste de l'Europe.

Dans cet évènement professionnel dirigé au secteur industriel, nous espérons nous faire connaître dans le monde de la fonderie sous pression à l'extérieur de nos frontières, pour cette façon essayé d'agrandir notre clientèle dans la grande amplitude de secteurs qu'on a couverts, comme ; Automobile, secteurs d’éclairages, serrurerie, quincaillerie, ferrures pour les meubles, outillage à main…

Si vous voulez nous rejoindre à MIDEST 2018, nous serons dans le Stand N°1G65.

mardi, 28 novembre 2017

Les fours de fusions d'aluminium sont composés de réfractaires (silice, alumine, ...) afin de résister à l'agressivité du métal liquide. Leur tenue dans le temps est conditionnée par la nature des réfractaires utilisé, la réalisation du briquetage du four et les conditions d'utilisation (température de fusion, entretien).

Résister aux agressions du métal liquide

Les fours de fusion, qu’ils soient à induction ou à creuset contiennent du métal liquide à haute température, de ce fait le garnissage réfractaire doit résister aux attaques du métal. Le bon fonctionnement de ces fours repose sur un choix et une utilisation correcte des matériaux réfractaires qui constituent la zone de fusion et les différentes parties du four de fusion. Il est important d’avoir une bonne tenue du revêtement réfractaire afin d’augmenter la durée des campagnes entre les réparations et de limiter la consommation spécifique de matériau. Les matériaux retenus doivent non seulement résister à la température mais également aux sollicitations mécaniques occasionnées par la présence du métal liquide et l'entretrien du four.

Matériaux utilisés

Les briques sont constitués d'un mélange de silice (Si02) et d'alumine (Al2O3) en proportion variable, mais contiennent d'autres éléments (MgO, CaO, FeO2, SiC, ...). Les briques sont collées avec une colle spécifique. Les briques peuvent être posées en quinconce, ce qui augmente leur tenue dans le four.

Materiales utilizados

Séchage

Le séchage des briques et du réfractaire est une opération importante qui prend plusieurs heures et doit respecter une courbe de montée en température. Cette courbe est enregistrée. Un brûleur d'appoint est nécessaire pour l'opération de séchage.

Dégradation

Lorsque la dégradation du réfractaire est importante peuvent apparaître des bourgeonnements de corindons dans les zones en contact avec le métal liquide et l'air du four. Si le corindon (matériau extrèmement dur) se détache des parois du four, il peut créer des points durs dans les pièces qui vont provoquer des casses des outils de coupe. 

fuente: My little blog fonderie

mercredi, 06 septembre 2017

Cette vidéo de 18 minutes de la BBC, si elle n'est pas de toute jeunesse (1973) vous dit TOUT sur la formation des grains (taille, anisotropie, ...) dans les métaux (alliages d'aluminium et aciers). Elle explicite l'impact du process de transformation (cold rolling, fonderie, ...) et des traitements thermiques sur la microstructure et l'influence des grains sur les caractéristiques mécaniques des pièces. C'est bien fait, très didactique et intéressant et nous sur My Little Blog Fonderie, on a bien aimé le petit coté rétro (l'essai de traction manuel, les parasites et décrochages de la vidéo VHS, ...) et le style très très sérieux de la BBC (bien voui, à la BBC, on fait dans le sérieux Madame). Si vous souhaitez voir une vidéo hilarante, ou si vous être légèrement dépressif, passez votre chemin camarade... Sinon et si la métallurgie vous passionne, c'est pour vous.

Source: My little blog foundarie

Source video: BBC

Le CTIF a mené de nombreuses études d'intérêt collectif sur la fonderie sous pression. L'une d'elles a permis d'explorer de manière approfondie la pression de multiplication qui permet de densifier le métal après le remplissage de l'empreinte et a un effet très bénéfique sur la santé interne en zones minces mais également en zones massives (bossages, ...). De nombreux paramètres impactent l'efficacité de cette phase de compression.

La méthodologie utilisé par CTIF

Un moule de pièce éprouvette (400 x 100 mm x 3,5 mm) a été instrumenté en capteurs de pression d'empreinte KISLER qui ont permis d'enregistrer la transmission de pression dans la pièce tous les 65 mm. Un plan d'essais a été mené avec enregistrement des courbes de pression, enregistrement des courbes d'injection machine (Buhler 630 t) et analyse de la porosité (par méthode de double pesée) dans les différentes zones de pièces (zones minces et zones massives) proches ou éloignées des attaques.

Téléchargez le PDF qui fait la synthèse des résultats

Les paramètres importants

Les paramètres les plus impactant sur la qualité de pièce sont multiples et dépendent tout aussi bien de la conception de la pièce (ou du moule) que des paramètres de production.

Paramètres de production :

  • Le niveau de pression de multiplication est majeur (1000 bars plus favorable que 600 bars)
  • Le retard avant application de la pression (retard faible de 100 ms plus favorable que retard important type 400 ms). Le retard tolérable est lié à l'épaisseur d'attaque mais également à l'épaisseur de pièce
  • Le niveau de pression de compression permet de comprimer les défauts de type soufflures, mais ne les supprime pas comme le montre un test ultérieur de cloquage à chaud (qui les fait réapparaître) La température d'injection du métal plus basse (660°C) est plus favorable qu'une température plus élevée (700°C)
  • Une épaisseur de pastille importante (50 mm contre 15 mm) est plus favorable car elle peut ralentir la solidification de la zone d'attaque de la pièce et modifie le point de déclenchement de la phase rapide d'injection (moins d'air entrainée)

Pièce et alliage

  • L'épaisseur de l'attaque de coulée. Une faible épaisseur d'attaque (1 mm) entraîne une solidification rapide et l'arrêt de la transmission de la pression de multiplication alors qu'une forte épaisseur est clairement favorable sur la qualité pièce
  • Le taux de porosité obtenu avec l'AlSi9Cu3(Fe) est plus faible que celui obtenu avec l'AlSi12, que ce soit en zone massive ou en zone fine
  • La transmission de la pression (et le niveau de qualité atteint) diminue lorsque l'on s'éloigne de l'attaque de coulée
  • Les zones massives (20 mm) sont beaucoup moins saines que les zones fines (3 mm) car elles cumulent des défauts de soufflure (air emprisonné) et défauts de retassure (contraction volumique à la solidification)
  • La pression de multiplication ne permet pas d'atteindre une santé équivalente en zone massive identique à celle des zones fines.

Source : CTIF

Alors que les alliages d'aluminium en fonderie sous pression ne peuvent normalement pas faire l'objet d'un traitement thermique (cloquage à chaud), le CSIRO (Centre Australien de Recherche) a mené des travaux de R&D sur le traitement thermique à basse température et courte durée sur un alliage bas fer de type A360 (Al-9Si-0.7Fe-0.6Mg-0.3Cu-0.2Zn-0.1Mn) et un alliage conventionnel de seconde fusion A380 (type AlSi9Cu3Fe). Les résultats mettent en évidence qu'un traitement non-isotherme de 15 min. à 480°C-525°C permet d'améliorer les propriétés mécaniques en statique (Rp0.2 passant de 162 MPa à 302 MPa après TTH) en réduisant considérablement les cloques après traitement thermique.

Les résultats du projet de R&D

Le CSIRO a développé des traitements thermiques à basse température et de courte durée. Ainsi au lieu d'avoir de traitement de 6-12 heures à 540°C (avec des alliages de type A356 et A357 - AlSi7Mg0.3 ou 0.6), ce nouveau process nécessite des temps de 10-15 minutes à 430-480°C.

Les éprouvettes ont été réalisées sur une machine Toshiba de 250 tonnes avec 3 éprouvettes par grappe; 2 éprouvettes cylindriques (diamètre 5.55 mm X 100 mm de long) et une éprouvette plate (Ep 3 mm x 70 x 14 mm). Les caractéristiques mécaniques ont été mesurées sur éprouvettes brutes de coulées et après traitement thermique dans différentes conditions.

Les températures de traitement traditionnelles (545°C) amènent de nombreuses cloques et des variations dimensionnelles importantes des pièces (pouvant nécessiter une opération de redressage) alors que des températures plus réduites alliées à des courtes durée sont nettement plus favorables.

  • 545°C - durée de 16 h et durée de 0.25 h De très nombreuses cloques
  • 535°C - durée de 0.25 h (15 min) Cloques peu nombreuses
  • 525°C - durée 0.25 h Quelques porosités
  • 485°C - 0.25 h Plus de cloques

fonderie sous pression

L'augmentation de la vitesse du métal aux attaques de coulée (de 26 m/s à 82 m/s) augmente encore sensiblement les caractéristiques après TTH (Rp0.2 passant de de 302 à 333 MPa et Rm de 326 à 404 MPa).

fonderie sous pression

Essais sur des pièces industrielles

Des essais de TTH à basse température ont été réalisés sur 6 références commerciales de petites pièces (de 50 à 550 g) avec des épaisseurs de 1.5 à 16 mm (pièces de structure ou non) sur des batchs de 75-100 pièces. Les pièces n'ont pas été triès en radiographie avant TTH et ont montrés un taux de rebut de 1 % seulement en moyenne lié à l'apparition de cloques après TTH. Le facteur le plus impactant pour le TTH était la température maximale atteinte plutôt que la durée de maintien. Pour les pièces les plus fines (sujettes aux cloque), la température de traitement a du être réduite à 440°C. Bien que les conditions de traitement étaient loin d'être isothermes, ces conditions temps/température ont données des caractéristiques satisfaisantes comparables à celles obtenues sur éprouvettes.

Source : CSIRO (Commonweath Scientific and Industrial Research Organization)

Blog